new type gypsum boiler

본문 바로가기


Home > Product > new type gypsum boiler
Product
new type gypsum boiler
Posting date : Oct 12, 2010
Membership
Free Member Scince Oct 12, 2010
Keyword :
Category
Contact
          0 likes     
Product Detail
Company Info
 
Quick Detail
Place of Origin
HS-CODE
84-
Package & Delivery Lead Time
Detailed Description
Operating mode of ebullience calciner:   The bed state of gypsum ebullience calciner belongs to bubbling bed so this calciner is called “ebullience calciner”. The calcining part of the ebullience calciner is a standing box-type container with a gas distribution board at the bottom for the purpose of supporting solid powder materials to avoid leakage when stopping running and having the gas from the bottom into lathe evenly during running. Continuous feeding batch feeder is equipped above the upper bound of the bed. There are overflow holes on the furnace wall of the upper bound of the bed, which is used for discharging materials. Many heating pipes are equipped within the beds and the heating media within the pipes are saturated steam or heat oil; the heat is transferred through pipe walls to fluidized gypsum powder outside of the pipe and makes the gypsum powder dehydrate and decompose. One electrical precipitator is equipped on the upper calcination section and the dust brought by gas when leaving fluidized bed shall be collected by the electrical precipitator and return to fluidized bed automatically. The dusted tail gas shall be extracted by extract blower into the air. During normal operation, blast air from the bottom of ebullience calciner and enter into fluidized bed through the gas distribution board. Then the heat pipe flooded within the fluidized bed shall transfer a large amount of heat to materials and have the dehydrate gypsum powders reach the temperature of dehydration and decomposition. The dehydrate gypsum shall dehydrate crystal water in fluidized bed and become steam. The steam mixes with the blasted air at the bottom of ebullience calciner and they move upward through bed. Since the steam is much more than air, the fluidization of the whole bubbling bed is realized by the steam formed from gypsum dehydration. Due to violent tumbling and mixing of powder materials in the fluidized bed, the temperature and components of the materials at all positions of the whole fluidized bed are almost the same. The raw gypsum powder added continuously, once entering the bed, shall immediately mix with the hot powder materials within the bed evenly and quickly dehydrate and decompose in the hot powder. In order to avoid that the raw gypsum is extracted too early before finishing dehydration, the furnace is designed to add a separator to divide the fluidized bed into a large and a small sections. The bottoms of two sections are connected. Raw gypsum enters into the large section firstly and dehydrates most of crystal water; then comes to the small section through the lower part of the passage and completes the final dehydration and overflow the furnace from upper bed automatically

ECROBOT CO., Ltd, Business Registration Number : 220-88-71747, CEO J.W.Park, TEL : +82-2-552-7676, E-mail : E-mail : Contact us
Address : (Hwanghwa B/D 11F, Yeoksam-dong)320, Gangnam-daero, Gangnam-gu, Seoul, South Korea
About Us Privacy Policy Terms of use Copyright © 2000-2024 ECROBOT.COM. All rights reserved.
Top