Basic Company Information
Company Advantage
Detail Company Introduction
Many of titanium’s material and component design characteristics make it expensive to machine. A considerable amount of stock must be removed from primary forms such as forgings, plates, bars, etc. In some instance, as much as 50 to 90% of the primary form’s weight ends up as chips. (The complexity of some finished parts, such as bulkhead, makes difficult the use of near-net-shape methods that would minimize chip forming.) Maximum machining efficiency for titanium alloys is required to minimize the costs of stock removal.
Historically, titanium has been perceived as a material that is difficult to machine. Due to titanium’s growing acceptance in many industries, along with the experience gained by progressive fabricators, a broad base of titanium machining knowledge now exists. Manufacturers now know that, with proper procedures, titanium can be fabricated using techniques no more difficult than those used for machining 316 stainless steel.
Stories about problems encountered when machining titanium have usually originated in shops working with aircraft alloys. The fact is that commercially pure grades of titanium (ASTM B, Grades 1, 2, 3, and 4) with tensile strengths of 241 to 552 MPa (35 to 80 ksi) machine much easier than aircraft alloys (i.e. ASTM B, Grade 5: Ti-6AL-4V).
With higher alloy content and hardness, the machinability of titanium alloys by traditional chip-making methods generally decreases. (This is true of most other metals.) At a hardness level over 38 RC (350 BHN) increased difficulty in operations such as drilling tapping, milling, and broaching can be expected. In general, however, if the particular characteristics of titanium are taken into account, the machining of titanium and its alloys should not present undue problems.
Machining of titanium alloys requires cutting forces only slightly higher than those needed to machine steels, but these alloys have metallurgical characteristics that make them somewhat more difficult to machine than steels of equivalent hardness. The beta alloys are the most difficult titanium alloys to machine. When machining conditions are selected properly for a specific alloy composition and processing sequence, reasonable production rates of machining can be achieved at acceptable cost levels.
Care must be exercised to avoid loss of surface integrity, especially during grinding; otherwise a dramatic loss in mechanical behavior such as fatigue can result. To date, techniques such as high-speed machining have not improved the machinability of titanium. A breakthrough appears to require the development of new tool materials.
At Zhengyuan Metal Materials Co.,Ltd, we strive for ultimate customer satisfaction. We work within a trusted network of suppliers, finishers and fabricators in order to give our customers the best quality, price and material delivery on every order.
Metal Materials, Inc. was founded based on first-rate customer service, fast turn around and no minimum order.
We have many years of experience in the Metals Industry. When you're looking for quality and experience, Metal Materials, Inc. is your first choice.